mv.calout.detect.Rd
interface to a parametric multivariate outlier detection algorithm
mv.calout.detect(x, k = min(floor((nrow(x) - 1)/2), 100), Ci = C.unstr,
lamfun = lams.unstr, alpha = 0.05, method = c("parametric",
"rocke", "kosinski.raw", "kosinski.exch")[1], ...)
x | data matrix |
---|---|
k | upper bound on number of outliers; defaults to just less than half the sample size |
Ci | function computing Ci, the covariance determinant ratio
excluding row i. At present, sole
option is |
lamfun | function computing lambda, the critical values for Ci |
alpha | false outlier labeling rate |
method | string identifying algorithm to use |
... | reserved for future use |
bushfire is a dataset distributed by Kosinski to illustrate his method.
a list with components
indices of outlying rows
values of outlying rows
input parameter k
input parameter alpha
C. Caroni and P. Prescott, Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 41, No. 2 (1992), pp. 355-364
VJ Carey
data(tcost)
mv.calout.detect(tcost)
#> $inds
#> [1] 21 9
#>
#> $vals
#> fuel repair capital
#> 21 26.16 17.44 16.89
#> 9 29.11 15.09 3.28
#>
#> $k
#> [1] 17
#>
#> $alpha
#> [1] 0.05
#>
data(bushfire)
mv.calout.detect(bushfire)
#> $inds
#> [1] 7 11 10 8 9
#>
#> $vals
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 92 110 46 165 235
#> [2,] 108 115 17 144 215
#> [3,] 100 104 21 133 208
#> [4,] 94 95 29 113 190
#> [5,] 94 94 29 110 188
#>
#> $k
#> [1] 18
#>
#> $alpha
#> [1] 0.05
#>