Skip to contents

All functions

ImageArray() data(<ImageArray>) dim(<ImageArray>)
The `ImageArray` class
LabelArray() dim(<LabelArray>) `[`(<LabelArray>,<ANY>,<ANY>,<ANY>)
The `LabelArray` class
PointFrame() names(<PointFrame>) dim(<PointFrame>) length(<PointFrame>) `$`(<PointFrame>) `[[`(<PointFrame>,<ANY>,<ANY>) `[`(<PointFrame>,<missing>,<ANY>,<ANY>) `[`(<PointFrame>,<ANY>,<missing>,<ANY>) `[`(<PointFrame>,<missing>,<missing>,<ANY>) `[`(<PointFrame>,<numeric>,<numeric>,<ANY>) as.data.frame(<PointFrame>)
The `PointFrame` class
ShapeFrame() dim(<ShapeFrame>) length(<ShapeFrame>) names(<ShapeFrame>) `$`(<ShapeFrame>) `[`(<ShapeFrame>,<missing>,<ANY>,<ANY>) `[`(<ShapeFrame>,<ANY>,<missing>,<ANY>) `[`(<ShapeFrame>,<missing>,<missing>,<ANY>) `[`(<ShapeFrame>,<numeric>,<numeric>,<ANY>)
The `ShapeFrame` class
SpatialData() `$`(<SpatialData>) data(<SpatialDataElement>) meta(<SpatialDataElement>) images(<SpatialData>) labels(<SpatialData>) shapes(<SpatialData>) points(<SpatialData>) tables(<SpatialData>) imageNames(<SpatialData>) labelNames(<SpatialData>) shapeNames(<SpatialData>) pointNames(<SpatialData>) tableNames(<SpatialData>) image(<SpatialData>) label(<SpatialData>) shape(<SpatialData>) point(<SpatialData>) table(<SpatialData>) `[[<-`(<SpatialData>,<numeric>,<ANY>,<ANY>) `[[<-`(<SpatialData>,<character>,<ANY>,<ANY>) `images<-`(<SpatialData>,<list>) `labels<-`(<SpatialData>,<list>) `shapes<-`(<SpatialData>,<list>) `points<-`(<SpatialData>,<list>) `tables<-`(<SpatialData>,<list>) `image<-`(<SpatialData>,<character>,<ImageArray>) `label<-`(<SpatialData>,<character>,<LabelArray>) `point<-`(<SpatialData>,<character>,<PointFrame>) `shape<-`(<SpatialData>,<character>,<ShapeFrame>) `table<-`(<SpatialData>,<character>,<SingleCellExperiment>) `image<-`(<SpatialData>,<numeric>,<ImageArray>) `label<-`(<SpatialData>,<numeric>,<LabelArray>) `point<-`(<SpatialData>,<numeric>,<PointFrame>) `shape<-`(<SpatialData>,<numeric>,<ShapeFrame>) `table<-`(<SpatialData>,<numeric>,<SingleCellExperiment>) `image<-`(<SpatialData>,<missing>,<ImageArray>) `label<-`(<SpatialData>,<missing>,<LabelArray>) `point<-`(<SpatialData>,<missing>,<PointFrame>) `shape<-`(<SpatialData>,<missing>,<ShapeFrame>) `table<-`(<SpatialData>,<missing>,<SingleCellExperiment>) `image<-`(<SpatialData>,<ANY>,<NULL>) `label<-`(<SpatialData>,<ANY>,<NULL>) `shape<-`(<SpatialData>,<ANY>,<NULL>) `point<-`(<SpatialData>,<ANY>,<NULL>) `table<-`(<SpatialData>,<ANY>,<NULL>) `image<-`(<SpatialData>,<ANY>,<ANY>) `label<-`(<SpatialData>,<ANY>,<ANY>) `shape<-`(<SpatialData>,<ANY>,<ANY>) `point<-`(<SpatialData>,<ANY>,<ANY>) `table<-`(<SpatialData>,<ANY>,<ANY>)
The `SpatialData` class
Zattrs() `$`(<Zattrs>) axes(<Zattrs>) coordTransData(<Zattrs>) coordTransName(<Zattrs>) coordTransType(<Zattrs>) axes(<SpatialDataElement>) coordTransData(<SpatialDataElement>) coordTransName(<SpatialDataElement>) coordTransType(<SpatialDataElement>)
The `Zattrs` class
available_10x_xen_zips()
use 'paws::s3' to interrogate an NSF Open Storage Network bucket for zipped 10x-produced Xenium outputs
available_sdio()
enumerate modules
available_spd_zarr_zips()
use 'paws::s3' to interrogate an NSF Open Storage Network bucket for zipped zarr archives for various platforms
blobs
`SpatialData` .zarr toy datasets
.coord2graph()
CS graph representation
do_tx_to_ext()
Use Python's 'spatialdata' 'transform_to_data_extent' on a spatialdata zarr store
.guess_scale()
#' @rdname ImageArray #' @exportMethod [ setMethod("[", "ImageArray", \(x, i, j, k, ..., drop=FALSE) # TODO: subsetting for multiscales if (missing(i)) i <- TRUE if (missing(j)) j <- TRUE if (missing(k)) k <- TRUE # get scale factor between pyramid layers is <- seq_along(x@data) as <- lapply(is, \(.) data(x, .)) ds <- vapply(as, dim, numeric(3)) sf <- if (length(is) == 1) 1 else cumprod(vapply( is[-1], \(.) ds[,.]/ds[,.-1], numeric(3))[, 1]) # validity if (isTRUE(j)) j <- seq(ds[2,1]) if (isTRUE(k)) k <- seq(ds[3,1]) # for (. in seq_along(ij <- list(j=j, k=k))) # if ((ds[.+1,1] # max(ij[[.]]) # stop("invalid '", names(ij)[.], "'") for (. in seq_along(sf)) .j <- if (!isTRUE(j)) unique(ceiling(j*sf[.])) else j .k <- if (!isTRUE(k)) unique(ceiling(k*sf[.])) else k x@data[[.]] <- data(x, .)[i, .j, .k, drop=FALSE] return(x) )
.get_path()
get transformations path
mask
Masking
merfish_demo_path()
check cache for merfish.zarr.zip and return path; retrieve/stash/return path if not found
show(<SpatialData>) show(<ImageArray>) show(<LabelArray>) show(<PointFrame>) show(<ShapeFrame>)
Miscellaneous `Miro` methods
path_to_10x_xen_demo()
provide path to a zip file from 10x genomics for Xenium platform
plotSpatialData() plotImage(<SpatialData>) plotLabel(<SpatialData>) plotPoint(<SpatialData>) plotPoint(<PointFrame>) plotShape(<SpatialData>)
`SpatialData` visualization
query(<SpatialData>) query(<ImageArray>) query(<LabelArray>) query(<ShapeFrame>) query(<PointFrame>)
spatial queries
readImage() readLabel() readPoint() readShape() readTable() readSpatialData()
Reading `SpatialData`
spd_demo_cached_path()
check cache for demonstration .zarr.zip and return path; retrieve data, cache it, return path if not found
spdzPath()
obtain path to cached zip archive of SpatialData zarr
unzip_merfish_demo()
unzip cached merfish demo data to specified folder
unzip_spd_demo()
unzip selected demo data to specified folder
use_sdio()
Use Python's 'spatialdata-io' to transform manufacturer output to .zarr with specific folder structure.