Skip to contents

Introductory remarks

  • learning a nonlinear regression model and putting it to use
  • “layers” of a multilayer neural net and their correspondence to patient characteristics (molecular, clinical) and treatment outcomes
    • input, output, loss function
  • excellent high level overview comparing convolutional neural nets and autoencoders

Road map

Images and categories

library(littleDeep)
data(ciftrain1k)
ciftrain1k
## ImageArray instance with 1000 images, each 32 x 32 x 3
##  Image types: possum lion ... caterpillar girl 
##  Array elements range from 0.000000 to 255.000000.
n <- preview(ciftrain1k)

We can filter an ImageArray

preview(filterByType(ciftrain1k, "orange"))

## NULL

Question on bias: Does the machine recognize the orange or just the “more orange” color distribution? How do you “normalize” images so that the “object itself” presents only the “essential features”?

A trained classifier that ingests JPGs as arrays and returns scores for resemblance to

pre-trained categories

Check here

I’ll demonstrate ‘jpeg_shrinker’ which could be installed on intel macs but not on M1 macs at this time. This program will convert a jpeg image to 32x32 resolution and use a trained CNN to classify the content.

islr_cnn
## function (iarr, nEpochs = 30, batchSize = 128, valSplit = 0.2) 
## {
##     reticulate::import("keras")
##     ca = match.call()
##     stopifnot(inherits(iarr, "ImageArray"))
##     arr = getArray(iarr)
##     d = dim(arr)[-1]
##     stopifnot(all(d == c(32, 32, 3)))
##     denom = max(arr)
##     yclass = getTypes(iarr)
##     yclass = as.numeric(factor(yclass))
##     yclass = yclass - min(yclass)
##     trainxy = list(train = list(x = arr, y = yclass))
##     ncat = length(unique(trainxy$train$y))
##     model <- keras_model_sequential() %>% layer_conv_2d(filters = 32, 
##         kernel_size = c(3, 3), padding = "same", activation = "relu", 
##         input_shape = c(32, 32, 3)) %>% layer_max_pooling_2d(pool_size = c(2, 
##         2)) %>% layer_conv_2d(filters = 64, kernel_size = c(3, 
##         3), padding = "same", activation = "relu") %>% layer_max_pooling_2d(pool_size = c(2, 
##         2)) %>% layer_conv_2d(filters = 128, kernel_size = c(3, 
##         3), padding = "same", activation = "relu") %>% layer_max_pooling_2d(pool_size = c(2, 
##         2)) %>% layer_conv_2d(filters = 256, kernel_size = c(3, 
##         3), padding = "same", activation = "relu") %>% layer_max_pooling_2d(pool_size = c(2, 
##         2)) %>% layer_flatten() %>% layer_dropout(rate = 0.5) %>% 
##         layer_dense(units = 512, activation = "relu") %>% layer_dense(units = ncat, 
##         activation = "softmax")
##     model %>% compile(loss = "categorical_crossentropy", optimizer = optimizer_rmsprop(), 
##         metrics = c("accuracy"))
##     history <- model %>% fit(trainxy$train$x/denom, to_categorical(trainxy$train$y, 
##         ncat), epochs = nEpochs, batch_size = batchSize, validation_split = valSplit)
##     curver = packageVersion("littleDeep")
##     ans = list(model = model, history = history, typelevels = typelevels(iarr), 
##         littleDeepVersion = curver, call = ca, date = Sys.Date())
##     class(ans) = c("islr_cnn", "list")
##     ans
## }
## <bytecode: 0x139d60f58>
## <environment: namespace:littleDeep>

Sfaira: a model zoo of pretrained embedders and cell-type classifiers from Theis Lab

We’ll look at the pkgdown site, specifically “get started” tab.